The spin evolution of nascent neutron stars
نویسندگان
چکیده
The loss of angular momentum due to unstable r-modes in hot young neutron stars has been proposed as a mechanism for achieving the spin rates inferred for young pulsars. One factor that could have a significant effect on the action of the r-mode instability is fallback of supernova remnant material. The associated accretion torque could potentially counteract any gravitational-wave induced spin-down, and accretion heating could affect the viscous damping rates and hence the instability. We discuss the effects of various external agents on the r-mode instability scenario within a simple model of supernova fallback on to a hot young magnetized neutron star. We find that the outcome depends strongly on the strength of the star’s magnetic field. Our model is capable of generating spin rates for young neutron stars that accord well with initial spin rates inferred from pulsar observations. The combined action of r-mode instability and fallback appears to cause the spin rates of neutron stars born with very different spin rates to converge, on a timescale of about a year. The results suggest that stars with magnetic fields ≤ 10 G could emit a detectable gravitational wave signal for perhaps several years after the supernova event. Stars with higher fields (magnetars) are unlikely to emit a detectable gravitational wave signal via the r-mode instability. The model also suggests that the r-mode instability could be extremely effective in preventing young neutron stars from going dynamically unstable to the bar-mode.
منابع مشابه
Spin and Isospin Asymmetry, Equation of State and Neutron Stars
In the present work, we have obtained the equation of state for neutron star matter considering the in uence of the ferromagnetic and antiferromagnetic spin state. We have also investigated the structure of neutron stars. According to our results, the spin asymmetry stiens the equation of state and leads to high mass for the neutron star.
متن کاملForty Years of X-Ray Binaries
In 2012 it was forty years ago that the discovery of the first X-ray binary Centaurus X-3 became known. That same year it was discovered that apart from the High-Mass X-ray Binaries (HMXBs) there are also Low-Mass X-ray Binaries (LMXBs), and that Cygnus X-1 is most probably a black hole. By 1975 also the new class of Be/X-ray binaries was discovered. After this it took 28 years before ESAs INTE...
متن کاملThe R-mode Instability in Rotating Neutron Stars
In this review we summarize the current understanding of the gravitational-wave driven instability associated with the so-called r-modes in rotating neutron stars. We discuss the nature of the r-modes, the detailed mechanics of the instability and its potential astrophysical significance. In particular we discuss results regarding the spin-evolution of nascent neutron stars, the detectability o...
متن کاملMagnetic and spin evolution of isolated neutron stars with the crustal magnetic field
We consider the magnetic and spin evolution of isolated neutron stars assuming that the magnetic field is initially confined to the crust. The evolution of the crustal field is determined by the conductive properties of the crust which, in its turn, depend on the thermal history of the neutron star. Due to this fact, a study of the magnetic field decay may be a powerful diagnostic of the proper...
متن کاملPorb RELATION FOR WIND-FED X-RAY PULSARS
We have investigated the relation between the orbital periods (Porb) and the spin periods (Ps) of wind-fed X-ray pulsars in high-mass X-ray binaries (HMXBs), based on population synthesis calculations of the spin evolution of neutron stars during the pre-HMXB stage. We show that most of the neutron stars either have steady accretion or still reside in the radio pulsar phase when the donor star ...
متن کامل